
Evaluation of Stopping Criterion in Contour 
Tracing Algorithms 

 
P.Rajashekar Reddy, V.Amarnadh, Mekala Bhaskar  

 
Department of CSE, Anurag Group of Institutions, 

CVSR College of Engineering, jodimetla, Ghatakesar, Hyderabad, AP, India 
 

                                     
Abstract— Under the conditions of fasting moving, shape 
changing and partial occlusion of target, Now mostly tracing 
algorithms are difficult to get accurate contour of target, for 
these problems, a novel contour tracing algorithm based on 
particle filter and fast level set is proposed. Firstly, the 
particle filter algorithm is adopted to estimate moving target's 
boundary contour. Then, according to the nearest neighbour 
decision method, a new the velocity function of fast level set is 
found, the strongpoint of the function is that the tracking 
algorithm is fit for target and background changing. Finally, 
the contour tracing is realized by evolving the zero level set 
curves using fast level set algorithm. Experiments for 
representative image sequences show that this algorithm can 
trace the rigid and non-rigid target contour under the 
complex environments. The result indicates that this 
algorithm is robust and accurate compared with other tracing 
algorithms. 
Evaluation of contour tracing algorithms and how the start 
and Stopping Criteria’s used in various contour tracing 
algorithms.  Concentrated to show the stopping criteria’s, and 
which criteria is the best to find contour of pixels of an image 
and comparison of different stopping criteria’s. The resulting 
contours can be used to create 3D reconstructions. 
 
Keywords: Topographic map, Contour line, Tracing, Moore 
neighborhood, Digital Elevation Map (DEM) 
 

I. INTRODUCTION 
What follows are four of the most common contour tracing 
algorithms. The first two, namely: the Square Tracing 
algorithm and Moore-Neighbor Tracing are easy to 
implement and are therefore used frequently to trace the 
contour of a given pattern. Unfortunately, both of these 
algorithms have a number of weaknesses which cause them 
to fail in tracing the contour of a large class of patterns due 
to their special kind of connectivity.  
The following algorithms will ignore any "holes" present 
in the pattern. For example, if we're given a pattern like that 
of Figure 1 below, the contour traced by the algorithms 
will be similar to the one shown in Figure 2 (the blue 
pixels represent the contour). This could be acceptable in 
some applications but in other applications, like character 
recognition, we would want to trace the interior of the 
pattern as well in order to capture any holes which identify 
a certain character. (Figure 3 below shows the "complete" 
contour of the pattern) As a result, a "hole searching" 
algorithm should be used to first extract the holes in a given 
pattern and then apply a contour tracing algorithm on each 
hole in order to extract the complete contour. 
      

 
Figure 1                                         Figure 2  

 

 
  In binary valued digital imaging, a pixel can either have a 
value of 1 -when it's part of the pattern- , or 0 -when its part 
of the background- i.e. there is no grayscale level. In order 
to identify objects in a digital pattern, we need to locate 
groups of black pixels that are "connected" to each other. In 
other words, the objects in a given digital pattern are the 
connected components of that pattern. In general, a 
connected component is a set of black pixels, P, such that 
for every pair of pixels pi and pj in P, there exists a 
sequence of pixels pi,..,pj such that: a) all pixels in the 
sequence are in the set P i.e. areblack,and b) every 2 pixels 
that are adjacent in the sequence are "neighbors" since we 
are using square pixels, the answer to the previous question 
is not trivial. The reason for that is: in a square tessellation, 
pixels either share an edge, a vertex, or neither. There are 8 
pixels sharing an edge or a vertex with any given pixel; 
these pixels make up the Moore neighbourhood of that 
pixel. Should we consider pixels having only a common 
vertex as "neighbours”? Or should 2 pixels have a common 
edge in order for them to be considered  "neighbours"? This 
gives rise to 2 types of connectedness, namely: 4-
connectivity and 8connectivityOnce after the connectivity 
has identified then we can trace the contour of the image .in 
this paper we are concentrating on Square tracing algorithm, 
Moore-Neighborhood algorithm, Pavlidi’s algorithm,, 
Radial Sweep algorithm 
The first two algorithms will ignore any "holes" present in 
the pattern. This could be acceptable in some applications 

P.Rajashekar Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3888-3894

3888



but in other applications, like character recognition, we 
would want to trace the interior of the pattern as well in 
order to capture any holes which identify a certain 
character. As a result, a "hole searching" algorithm should 
be used to first extract the holes in a given pattern and then 
apply a contour tracing algorithm on each hole in order to 
extract the complete contour. The idea behind Moore-
Neighbor tracing is simple; but before we explain it, we 
need to define an important concept the Moore 
neighborhood of a pixel.  
II. Square Tracing Algorithm 
The idea behind the square tracing algorithm is very 
simple; this could be attributed to the fact that the algorithm 
was one of the first attempts to extract the contour of a 
binary pattern. To understand how it works, you need a bit 
of imagination...Given a digital pattern i.e. a group of black 
pixels, on a background of white pixels i.e. a grid; locate a 
black pixel and declare it as your "start" pixel. (Locating a 
"start" pixel can be done in a number of ways; we'll start at 
the bottom left corner of the grid, scan each column of 
pixels from the bottom going upwards -starting from the 
leftmost column and proceeding to the right- until we 
encounter a black pixel. We'll declare that pixel as our 
"start" pixel.) Now, imagine that you are a bug (ladybird) 
standing on the start pixel as in Figure 4 below. In order to 
extract the contour of the pattern, you have to do the 
following:  
every time you find yourself standing on a black pixel, turn 
left, and every time you find yourself standing on a white 
pixel, turn right, until you encounter the start pixel again. 
The black pixels you walked over will be the contour of the 
pattern.  

 
Figure 4 

 
The important thing in the square tracing algorithm is the 
"sense of direction". The left and right turns you make are 
with respect to your current positioning, which depends on 
the way you entered the pixel you are standing on. 
Therefore, it's important to keep track of your current 
orientation in order to make the right moves.  
Algorithm:  
The following is a formal description of the square tracing 
algorithm:  

Input: A square tessellation, T, containing a connected 
component P of black cells.  
Output: A sequence B (b1, b2,..., bk) of boundary pixels i.e. 
the contour.  
Begin  
 Set B to be empty. 
 From bottom to top and left to right scan the cells 
of T until a black pixel, s, of P is found. 
 Insert s in B. 
 Set the current pixel, p, to be the starting pixel, s. 
 Turn left i.e. visit the left adjacent pixel of p. 
 Update p i.e. set it to be the current pixel. 
 While p not equal to s do 
   If the current pixel p is black  

o insert p in B and turn left (visit the left 
adjacent pixel of p). 

o Update p i.e. set it to be the current pixel. 
   else  
o turn right (visit the right adjacent pixel of 

p). 
o Update p i.e. set it to be the current pixel. 
end while 

End  
   
Note: The notion of left and right in the above algorithm is 
not to be interpreted with respect to the page or the reader 
but rather with respect to the direction of entering the 
"current'' pixel during the execution of the scan.  
 Demonstration:: 
The following is an animated demonstration of how the 
square tracing algorithm proceeds to trace the contour of a 
given pattern. Remember that you are a bug (ladybird) 
walking over the pixels; notice how your orientation 
changes as you turn left or right. Left and right turns are 
made with respect to your current positioning on the pixel 
i.e. your current orientation.  

 
Analysis  
It turns out that the square tracing algorithm is very limited 
in its performance. In other words, it fails to extract the 
contour of a large family of patterns which frequently occur 
in real life applications. This is largely attributed to the left 
and right turns which tend to miss pixels lying "diagonally" 
with respect to a given pixel. We will examine different 
patterns of different connectivity and see why the square 
tracing algorithm fails. In addition, we will examine ways 
in which we can improve the performance of the algorithm 

P.Rajashekar Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3888-3894

3889



and make it at least work for patterns with a special kind of 
connectivity.  
  The Stopping Criterion: One weakness of the square 
tracing algorithm lies in the choice of the stopping 
criterion. In other words, when does the algorithm 
terminate?  
In the original description of the square tracing algorithm, 
the stopping criterion is visiting the start pixel for a second 
time. It turns out that the algorithm will fail to contour trace 
a large family of patterns if it were to depend on that 
criterion.  
What follows is an animated demonstration explaining how 
the square tracing algorithm fails to extract the contour of a 
pattern due to the bad choice of the stopping criterion:    As 
you can see, improving the stopping criterion would be a 
good start to improving the overall performance of the 
square tracing algorithm. There are 2 effective alternatives 
to the existing stopping criterion:  
a) Stop after visiting the start pixel n times, where n is at 
least 2, OR b) Stop after entering the start pixel a second 
time in the same manner you entered it initially. This 
criterion was proposed by Jacob Eliosoff and we will 
therefore call it Jacob's stopping criterion.  
Changing the stopping criterion will generally improve the 
performance of the square tracing algorithm but will not 
allow it to overcome other weaknesses it has towards 
patterns of special kinds of connectivity.   The Square 
Tracing Algorithm fails to trace the contour of a family 
of 8-connected patterns that are NOT 4-connected  
The following is an animated demonstration of how the 
square tracing algorithm (with Jacob's stopping 
criterion) fails to extract the contour of an 8-connected 
pattern that's not 4-connected:   Is the Square Tracing 
Algorithm completely useless? If you have read the 
analysis above you must be thinking that the square tracing 
algorithm fails to extract the contour of most patterns. It 
turns out that there exists a special family of patterns which 
are completely and correctly contour traced by the square 
tracing algorithm. Let P be a set of 4-connected black 
pixels on a grid. Let the white pixels of the grid i.e. the 
background pixels, W, also be 4-connected. It turns out that 
given such conditions of the pattern and its background, we 
can prove that the square tracing algorithm (using Jacob's 
stopping criterion) will always succeed in extracting the 
contour of the pattern. The following is a proof when both 
pattern and background pixels are 4-connected, the square 
tracing algorithm will correctly extract the contour of the 
pattern provided we use Jacob's stopping criterion.  
  Proof: Given: A pattern, P, such that both the pattern 
pixels i.e. the black pixels, and the background pixels i.e. 
the white pixels, W, are 4-connected.  
 
First Observation Since the set of white pixels, W, are 
assumed to be 4-connected, this means that the pattern 
cannot have any "holes" in it. (Informally, "holes" are 
groups of white pixels which are completely surrounded by 
black pixels in the given pattern). The presence of any 
"hole" in the pattern will result in disconnecting a group of 
white pixels from the rest of the white pixels and therefore 
making the set of white pixels not 4-connected. Figure 2 

and Figure 5 below demonstrate 2 kinds of "holes" that 
could occur in a 4-connected pattern:  
 

 
Figure 5    Figure 6 

 
Second Observation  
Any two black pixels of the pattern MUST share a side. 
Say that 2 black pixels only share a vertex, then, in order to 
satisfy the 4-connectedness property of the pattern, there 
should be a path linking those 2 pixels such that every 2 
adjacent pixels in that path are 4-connected. But this will 
give us a pattern similar to the one in Figure 6 above. In 
other words, this would cause the white pixels to become 
disconnected.  
Figure 7 below demonstrates a typical pattern satisfying 
the assumption that both background and pattern pixels are 
4-connected i.e. no "holes" and every 2 black pixels share a 
side:  

 
Figure 7  

A useful way of picturing such patterns is: First, consider 
the boundary pixels i.e. the contour, of the pattern. Then, if 
we consider each boundary pixel as having 4 edges each of 
unit length, we'll see that some of these edges are shared 
with adjacent white pixels. We'll call these edges i.e. the 
ones shared with white pixels, boundary edges. These 
boundary edges could be viewed as edges of a polygon. 
Figure 8 below demonstrates this idea by showing you the 
polygon corresponding to the pattern in Figure 7 above:  
 

 
Figure 8 

P.Rajashekar Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3888-3894

3890



If we look at all possible "configurations" of boundary 
pixels that could arise in such patterns, we'll see that there 
are 2 basic cases displayed in Figure 9 and Figure 10 
below.  
Boundary pixels may be multiples of these cases or 
different positioning i.e. rotations of these 2 cases.  
The boundary edges are marked in blue as E1, E2, E3 and 
E4.  
 

 
Figure 9    Figure 10 

 
Third Observation For both the above 2 cases, no matter 
which pixel you choose as your start pixel and no matter 
what direction you enter it, the square tracing algorithm 
will never "backtrack", will never "go through" a 
boundary edge twice (unless it's tracing the boundary for a 
second time) and will never miss a boundary edge...try it! 2 
concepts need to be clarified here: a) the algorithm 
"backtracks" when it goes backwards to visit an already 
visited pixel before tracing the whole boundary, and b) for 
every boundary edge there are 2 ways to "go through" it, 
namely "in" or "out" (where "in" means towards the inside 
of the corresponding polygon and "out" means towards the 
outside of the polygon).  
In addition, when the square algorithm goes "in" through 
one of the boundary edges, it will go "out" through the next 
boundary edge i.e. it can't be possible for the square tracing 
algorithm to go through 2 consecutive boundary edges in 
the same manner.    
 
Final Observation There is an even number of boundary 
edges for any given pattern. If you take a look at the 
polygon of Figure 5 above, you'll see that: if you want to 
start at vertex S, marked on the diagram, and follow the 
boundary edges until you reach S again; you'll see that 
you'll pass by an even number of boundary edges in the 
process. Consider each boundary edge as a "step" in a given 
direction. Then, for every "step" to the right, there should 
be a corresponding "step" to the left if you want to go back 
to your original position. The same applies to vertical 
"steps" . As a result, the "steps" should be matching pairs 
and this explains why there would be an even number of 
boundary edges in any such pattern.  
As a result, when the square tracing algorithm enters the 
start boundary edge (of the start pixel) for a second time, 
it will do so in the same direction it did when it first 
entered it. The reason for that is since there are 2 ways to 
go through a boundary edge, and since the algorithm 
alternates between "in" and "out" of consecutive boundary 
edges, and since there is an even number of boundary 
edges, the algorithm will go through the start boundary 
edge a second in the same manner it did the first time 
around.   
 

III .MOORE NEIGHBORHOOD 
The Moore neighborhood of a pixel, P, is the set of 8 pixels 
which share a vertex or edge with that pixel. These pixels 
are namely pixels P1, P2, P3, P4, P5, P6, P7 and P8 shown 
in Figure: 1below. The Moore neighborhood (also known 
as the 8-neighbors or indirect neighbors) is an important 
concept that frequently arises in the Literature   

 
Now we are ready to introduce the idea behind Moore-
Neighbor tracing. Given a digital pattern i.e. a group of 
black pixels, on a background of white pixels i.e. a grid; 
locate a black pixel and declare it as your "start" pixel. 
Locating a "start" pixel can be done in a number of ways; 
we'll start at the bottom left corner of the grid, scan each 
column of pixels from the bottom going upwards -starting 
from the leftmost column and proceeding to the right- until 
we encounter a black pixel. We'll declare that pixel as our 
"start" pixel. Now, imagine that you are a bug (ladybird) 
standing on the start pixel. Without loss of generality, we 
will extract the contour by going around the pattern in a 
clockwise direction. It doesn't matter which direction you 
choose as long as you stick with your choice throughout the 
algorithm. The general idea is: every time you hit a black 
pixel, P, backtrack i.e. go back to the white pixel you were 
previously standing on, then, go around pixel P in a 
clockwise direction, visiting each pixel in its Moore 
neighbourhood, until you hit a black pixel. The algorithm 
terminates when the start pixel is visited for a second time. 
The black pixels you walked over will be the contour of the 
pattern.  
Algorithm  
The following is a formal description of the Moore-
Neighbor tracing algorithm:  
Input: A square tessellation, T, containing a connected 
component P of black cells.  
Output: A sequence B (b1, b2 ,..., bk) of boundary pixels i.e. 
the contour.  
Define (a) to be the Moore neighborhood of pixel a. Let p 
denote the current boundary pixel. Let c denote the current 
pixel under consideration i.e. c is in M (p).  
Begin  
Set B to be empty. 
From bottom to top and left to right scan the cells of T until 
a black pixel, s, of P is found. 
Insert s in B. 
Set the current boundary point p to s i.e. p=s 
Backtrack i.e. move to the pixel from which s was entered. 
Set c to be the next clockwise pixel in M(p). 
While c not equal to s do 
     If c is black  

P.Rajashekar Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3888-3894

3891



o insert c in B 
o set p=c 
o backtrack (move the current pixel c to the 
pixel from which p was entered) 
   else  
o advance the current pixel c to the next 
clockwise pixel in M(p) 
end while 
           End  
  
Analysis  
The main weakness of Moore-Neighbor tracing lies in the 
choice of the stopping criterion, in other words, when does 
the algorithm terminate? In the original description of the 
algorithm used in Moore-Neighbour tracing, the stopping 
criterion is visiting the start pixel for a second time. Like in 
the case of the Square Tracing algorithm, it turns out that 
Moore-Neighbor tracing will fail to contour trace a large 
family of patterns if it were to depend on that criterion. As 
you can see, improving the stopping criterion would be a 
good start to improving the overall performance of Moore-
Neighbor tracing.  
  Stopping Criterion 
a) Stop after visiting the start pixel n times, where n 
is at least 2, 
 OR  
b) Stop after entering the start pixel a second time in the 
same manner you entered it initially. This criterion was 
proposed by Jacob Eliosoff and we will therefore call it 
Jacob's stopping criterion.  
Using Jacob's stopping criterion will greatly improve the 
performance of Moore-Neighbor tracing making it the best 
algorithm for extracting the contour of any pattern no 
matter what its connectivity. The reason for this is largely 
due to the fact that the algorithm checks the whole Moore 
neighbourhood of a boundary pixel in order to find the next 
boundary pixel. Unlike the Square Tracing algorithm, 
which makes either left or right turns and misses "diagonal" 
pixels; Moore-Neighbor tracing will always be able to 
extract the outer boundary of any connected component. 
The reason for that is: for any 8-connected (or simply 
connected) pattern, the next boundary pixel lies within the 
Moore neighbourhood of the current boundary pixel. Since 
Moore-Neighbor tracing proceeds to check every pixel in 
the Moore neighbourhood of the current boundary pixel, it 
is bound to detect the next boundary pixel. When Moore-
Neighbor tracing visits the start pixel for a second time in 
the same way it did the first time around, this means that it 
has traced the complete outer contour of the pattern and if 
not terminated, it will trace the same contour again.  
 

IV.RADIAL SWEEP 
 The Radial Sweep algorithm is a contour tracing algorithm 
that has been explained in some of the literature. Unlike its 
fancy name, the idea behind it is very simple. As a matter 
of fact, it turns out that the Radial Sweep algorithm is 
identical to Moore-Neighbor Tracing. So you must be 
asking: "Why did we bother to mention it here?  
Moore-Neighbor tracing searches the Moore 
neighbourhood of the current boundary pixel in a certain 

direction (we've chosen clockwise), until it finds a black 
pixel. It then declares that pixel as the current boundary 
pixel and proceeds as before. The Radial Sweep algorithm 
does the exact same thing. On the other hand, it provides an 
interesting method for finding the next black pixel in the 
Moore neighbourhood of a given boundary pixel. The idea 
behind that method is the following: every time you locate 
a new boundary pixel, make it your current pixel, P, and 
draw an imaginary line segment joining P to the previous 
boundary pixel. Then, rotate the segment about P in a 
clockwise direction until it hits a black pixel in P's Moore 
neighbourhood. Rotating the segment is identical to 
checking each pixel in the Moore neighbourhood of P. We 
have provided the following animated demonstration in 
order to explain how the Radial Sweep algorithm works 
and how similar it is to Moore-Neighbor tracing. Let's 
examine the behaviour of the algorithm when the following 
stopping criteria are used. 
Analysis 
 1) Stopping Criterion 1: 
Let the Radial Sweep algorithm terminate when it visits the 
start pixel for a second time. A point worth mentioning is 
that the performance of the Radial Sweep algorithm is 
identical to that of Moore-Neighbor tracing when this 
stopping criterion is used in both. In the Square Tracing 
algorithm and Moore-Neighbor tracing, we found that 
using Jacob's stopping criterion (proposed by Jacob 
Eliosoff ) greatly improved both algorithms' performance. 
Jacob's stopping criterion requires that the algorithm 
terminates when it visits the start pixel for a second time in 
the same direction it did the first time around. 
Unfortunately, we won't be able to use Jacob's stopping 
criterion in the Radial Sweep algorithm. The reason for this 
is the fact that the Radial Sweep algorithm doesn't define 
the concept of the "direction" in which it enters a boundary 
pixel. In other words, it's not clear (nor is it trivial to define) 
the "direction" in which a boundary pixel is entered in the 
algorithm. Therefore, we will suggest another stopping 
criterion which doesn't depend on the direction in which 
you enter a certain pixel and will improve the performance 
of the Radial Sweep algorithm  
2) Stopping Criterion 2: 
Assume that each time a new boundary pixel, Pi, is found 
by the algorithm, it is inserted in the sequence of boundary 
pixels as such: P1, P2, P3, ..., Pi; and is declared as the 
current boundary pixel. (Assume P1 is the start pixel). This 
means that we know the previous boundary pixel, Pi-1, of 
every current boundary pixel, Pi . (As for the start pixel, we 
will assume that P0 is an imaginary pixel -not equivalent to 
ANY pixel on the grid- which comes before the start pixel 
in the sequence of boundary pixels). With the above 
assumptions in mind, we can define our stopping criterion. 
The algorithm terminates when: a) the current boundary 
pixel, Pi, has appeared previously as pixel Pj (where  j < i ) 
in the sequence of boundary pixels, and b)  Pi-1 =  Pj-1. In 
other words, the algorithm terminates when it visits a 
boundary pixel, P, for a second time provided that the 
boundary pixel before P (in the sequence of boundary 
pixels) the second time around, is the same pixel which was 
before P when P was first visited. If this stopping criterion 

P.Rajashekar Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3888-3894

3892



was satisfied and the algorithm didn't terminate, the Radial 
Sweep algorithm will proceed to trace the same boundary 
for a second time. The performance of the Radial Sweep 
algorithm using this stopping criterion is similar to the 
performance of Moore-Neighbour tracing using Jacob's 
stopping criterion.  
 

V.THEO PAVLIDIS 
This algorithm is one of the more recent contour tracing 
algorithms and was proposed by Theo Pavlidis. It is not as 
simple as the Square Tracing algorithm or Moore-Neighbor 
tracing, we will explain this algorithm using an approach 
different from the one presented in the book. This approach 
is easier to comprehend and will give insight into the 
general idea behind the algorithm. Without loss of 
generality, we have chosen to trace the contour in a 
clockwise direction in order to be consistent with all the 
other contour tracing algorithms discussed on this web site. 
On the other hand, Pavlidis chooses to do so in a counter 
clockwise direction. This shouldn't make any difference 
towards the performance of the algorithm. The only effect 
this will have is on the relative direction of movements 
you'll be making while tracing the contour. Given a digital 
pattern i.e. a group of black pixels, on a background of 
white pixels i.e. a grid; locate a black pixel and declare it as 
your "start" pixel. Locating a "start" pixel can be done in a 
number of ways; one of which is done by starting at the 
bottom left corner of the grid, scanning each column of 
pixels from the bottom going upwards -starting from the 
leftmost column and proceeding to the right- until a black 
pixel is encountered. Declare that pixel as the "start" pixel. 
We will not necessarily follow the above method in 
locating a start pixel. Important restriction regarding the 
direction in which you enter the start pixel You actually can 
choose ANY black boundary pixel to be your start pixel as 
long as when you're initially standing on it, your left 
adjacent pixel is NOT black. In other words, you should 
make sure that you enter the start pixel in a direction which 
ensures that the left adjacent pixel to it will be white ("left" 
here is taken with respect to the direction in which you 
enter the start pixel). Now, imagine that you are a bug 
standing on the start pixel throughout the algorithm; the 
pixels which interest you at any time are the 3 pixels in 
front of you i.e. P1, P2 and P3. We will define P2 to be the 
pixel right in front of you, P1 is the pixel adjacent to P2 
from the left and P3 is the right adjacent pixel to P2. Like 
in the Square Tracing algorithm, the most important thing 
in Pavlidis' algorithm is your "sense of direction". The left 
and right turns you make are with respect to your current 
positioning, which depends on the way you entered the 
pixel you are standing on. Therefore, it's important to keep 
track of your current orientation in order to make the right 
moves. But no matter what position you are standing in, 
pixels P1, P2 and P3 will be defined as above. With this 
information, we are ready to explain the algorithm. Every 
time you are standing on the current boundary pixel (which 
is the start pixel at first) do the following: First, check pixel 
P1. If P1 is black, then declare P1 to be your current 
boundary pixel and move one step forward followed by one 
step to your current left to land on P1. The order in which 

you make your moves is very important. Only if P1 is white 
proceed to check P2.If P2 is black, and then declare P2 to 
be your current boundary pixel and move one step forward 
to land on P2. Only if both P1 and P2 are white proceed to 
check P3. If P3 is black, then declare P3 to be your current 
boundary pixel and move one step to your right followed 
by one step to your current left as demonstrated in Figure 4 
below. 3 simple rules for 3 simple cases. As you've seen, 
it's important to keep track of your direction as you turn 
since all moves are with respect to your current orientation. 
What if all 3 pixels in front of you are white? Then, you 
rotate (while standing on the current boundary pixel) 90 
degrees clockwise to face a new set of 3 pixels in front of 
you. Afterwards you do the same check on these new pixels 
as you've done before. You may still ask: what if all of 
these 3 pixels are white?! Then rotate again through 90 
degrees clockwise while standing on the same pixel. You 
can rotate 3 times (each through 90 degrees clockwise) 
before checking out the whole Moore neighbourhood of the 
pixel. If you rotate 3 times without finding any black pixels, 
this means that you are standing on an isolated pixel i.e. not 
connected to any other black pixel. That's why the 
algorithm will allow you to rotate 3 times before it 
terminates. Another thing: When does the algorithm 
terminate? The algorithm terminates in 2 cases: a) As 
mentioned above, the algorithm will allow you to rotate 3 
times each through 90 degrees clockwise after which it will 
terminate and declare the pixel an isolated one, OR b) when 
the current boundary pixel is your start pixel, the algorithm 
terminates "declaring" that it has traced the contour of the 
pattern.  
Algorithm 
The following is a formal description of Pavlidis' algorithm:  
Input: A square tessellation, T, containing a connected 
component P of black cells.  
Output: A sequence B (b1, b2,..., bk) of boundary pixels i.e. 
the contour.  
Definitions:  
Define p to be the current boundary pixel i.e. the pixel you 
are standing on. 
 Define pixels P1, P2 and P3  
 P2 is the pixel in front of you adjacent to the one 

you are currently standing on i.e. pixel p. 
 P1 is the left adjacent pixel to P2. 
 P3 is the right adjacent pixel to P2. 
 Define a "step" in a given direction as moving a 

distance of one pixel in that direction. 
Imagine that you are a bug moving from pixel to pixel 
following the given directions. "forward", "left" and "right" 
are with respect to your current positioning on the pixel.   \     
Begin  
 Set B to be empty. 
 From bottom to top and left to right scan the cells of T 

until a black start pixel, s, of P is found (see Important 
restriction concerning direction you enter start pixel 
above) 

 Insert s in B. 
 Set the current pixel, p, to be the starting pixel, s. 
 Repeat the following 
If pixel P1 is black  

P.Rajashekar Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3888-3894

3893



o Insert P1 in B 
o Update p=P1 
o Move one step forward followed by one 
step to your current left 
else if P2 is black  
o Insert P2 in B 
o Update p=P2 
o Move one step forward 
o else if P3 is black  
o Insert P3 in B 
o Update p=P3 
o Move one step to the right, update your 
position and move one step to your current left  
else if you have already rotated through 90 degrees 
clockwise 3 times while on the same pixel p  
o terminate the program and declare p as an 
isolated pixel 
else  
o rotate 90 degrees clockwise while 
standing on the current pixel p 
 
Until p=s  (End Repeat) 
               End  
   
     
Remember that you are a bug walking over the pixels; 
notice how your orientation changes as you turn left or 
right. We have included all possible cases of the algorithm 
in order to explain it as thoroughly as possible.  
   Analysis  
If you are thinking that Pavlidis' algorithm is the perfect 
one for extracting the contour of patterns, think again... It's 
true that this algorithm is a bit more complex than say, 
Moore-Neighbor tracing which has no special cases to take 
care of, yet it fails to extract the contour of a large family of 
patterns having a certain kind of connectivity . The 
algorithm works very well on 4-connected patterns. its 
problem lies in tracing some 8-connected patterns that are 
not 4-connected. There are 2 simple ways of modifying the 
algorithm in order to improve its performance dramatically.  
a) Change the stopping criterion Instead of terminating the 
algorithm when it visits the start pixel for a second time, 
make the algorithm terminate after visiting the start pixel a 
third or even a fourth time. This will improve the general 
performance of the algorithm.  
OR  
b) Go to the source of the problem; namely, the 
choice of the start pixel there is an important restriction 
concerning the direction in which you enter the start pixel. 
Basically, you have to enter the start pixel such that when 
you're standing on it, the pixel adjacent to you from the left 
is white. The reason for imposing such a restriction is: 
since you always consider the 3 pixels in front of you in a 
certain order, you'll tend to miss a boundary pixel lying 
directly to the left of the start pixel in certain patterns. Not 
only the left adjacent pixel of the start pixel is at risk of 
being missed, but also the pixel directly below that pixel 
faces such a threat On the other hand, finding a start pixel 
which satisfies the above restriction could be tough and in 
many cases such a pixel won't be found. In that case, the 

alternative method for improving Pavlidis' algorithm 
should be used, namely: terminating the algorithm after 
visiting the start pixel for a third time.  
 

VI. CONCLUSION: 
The Modified Moore Neighbor algorithm works on pre-
thinned contour lines (single pixel width). Its efficiency 
over the original Moore Neighbor algorithm lies in the 
stopping criterion as the Complexity is greatly reduced and 
hole searching algorithm is not required which further 
reduces The time complexity. In order to overcome the 
disadvantage of rechecking black pixels in Proposed 
algorithm, we can check whether the contour line on which 
the pixel exists has been Traced or not rather than checking 
the pixel. This work can be refined further by 
automatically. Extracting altitude value from the 
topographic sheet by using and automated OCR method. 
The Pavlidis algorithm works very well on 4-connected 
patterns. its problem lies in tracing some 8-connected 
patterns that are not 4-connected. The MooreNeighbor 
algorithm is simple but it is having weak stopping criterion. 
By this we can understand all algorithms having merits and 
demerits.Anyways we need efficient contour tracing 
algorithms which are easy to implement in terms of logic 
for starting and stopping criterion 
 

ACKNOWLEDGMENT 
We are very much thankful to out Head of the department 
Prof .G. Vishnu Murthy for giving us immense support to 
carry out this paper and we thanks all our colleagues for 
giving moral support. 
 

REFERENCES 
1) G. Toussaint, Course Notes: Grids, connectivity and contour tracing 
(PostScript)  
2) T. Pavlidis, Algorithms for Graphics and   Image Processing, 
Computer Science Press, Rockville, Maryland, 1982  
3) Mike Alder, Border Tracing (by radial sweep)  
4) M. Soss, Proof of correctness of Square Tracing algorithm when both 
pattern and back ground are 4-connected   

    

[1] F. Leberl, D. Olson, “Raster scanning for operational digitizing of 
graphical data”, Photogram metric Engineering and Remote 
Sensing, 48(4), pp. 615-627, 1982. 

[2] D. Greenle, “Raster and Vector Processing for Scanned line work”, 
Photogram metric and Remote Sensing, 53(10), pp. 1383-1387, 
1987. 

[3] P. Soille, P Arrighi, “From Scanned Topographic Maps to Digital 
Elevation Models”, Proc. Of Geovision, International Symposium on 
Imaging Applications in Geology, pp.1-4, 1999. 

[4] S. Frischknecht, E. Kanani, “Automatic Interpretation of Scanned 
Topographic Maps: A Raster – Based Approach”, Proc.Second 
International Workshop, GREC, pp.207-220, 1997. 

[5] S. Salvatore, P. Guitton, “Contour Lines Recognition from Scanned 
Topographic Maps”, Journal of WSCG, pp. 1-3, 2004. 

[6] X. Z. Zhou, H. L. Zhen, “Automatic vectorization of comtour lines 
based on Deformable model and Field Flow Orientation”, Chinese 
Journal of Computers,vol 8, pp. 1056-1063, 2004. 

[7] Dongjum Xin, X. Z. Zhou, H.L.Zhen, “Contour Line Extraction from 
Paper- based Topographic Maps”. 

[8] G. Toussaint, Course Notes: Grids, connectivity and contour Tracing 
<http://jeff.cs.mcgill.ca/~godfried/teaching/pr-notes/contour.ps>. 

[9] Lam, L., Seong-Whan Lee, and Ching Y. Suen, "Thinning 
Methodologies-A Comprehensive Survey," IEEE Transactions on 
Pattern Analysis and Machine Intelligence, Vol 14, No. 9,September 
1992, page 879. 

P.Rajashekar Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3888-3894

3894




